题目内容
【题目】如图所示,已知AB是圆O的直径,圆O过BC的中点D,且DE⊥AC.
(1)求证:DE是圆O的切线;
(2)若∠C=30°,CD=10cm,求圆O的半径.
【答案】
(1)证明:连接OD,
∵D是BC的中点,O为AB的中点,
∴OD∥AC.
又∵DE⊥AC,
∴OD⊥DE,
∵OD为半径,
∴DE是圆O的切线
(2)解:连接AD;
∵AB是圆O的直径,
∴∠ADB=90°=∠ADC,
∴△ADC是直角三角形.
∵∠C=30°,CD=10,
∴AD= .
∵OD∥AC,OD=OB,
∴∠B=30°,
∴△OAD是等边三角形,
∴OD=AD= ,
∴圆O的半径为 cm.
【解析】(1)连接OD,利用三角形的中位线定理可得出OD∥AC,再利用平行线的性质就可证明DE是圆O的切线.(2)利用30°特殊角度,可求出AD的长,由两直线平行同位角相等,可得出∠ODB=∠C=30°,从而△ABD为直角三角形,圆O的半径可求.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目