题目内容
【题目】如图,在Rt△ABC中,∠ACB=90°,D为AB的中点,AE∥CD,CE∥AB,连接DE交AC于点O.
(1)证明:四边形ADCE为菱形;
(2)证明:DE=BC.
【答案】
(1)证明:∵AE∥CD,CE∥AB,
∴四边形ADCE是平行四边形,
∵∠ACB=90°,D为AB的中点,
∴CD= AB=AD,
∴四边形ADCE为菱形;
(2)证明:∵四边形ADCE为菱形,
∴AC⊥DE,
∵∠ACB=90°,
∴AC⊥BC,
∴DE∥BC,
又∵CE∥AB,
∴四边形BCED是平行四边形,
∴DE=BC.
【解析】(1)有一组对边相等的平行四边形为菱形,所以由AE∥CD,CE∥AB,易得四边形ADCE是平行四边形;又由直角三角形斜边上的中线等于斜边的一半,可得CD= AB=AD,最后得到四边形ADCE为菱形;
(2)证明DE=BC可利用证明四边形BCED是平行四边形得到,由于CE∥AB,再利用垂直于同一条直线的两条线平行,可得DE∥BC,最终得到四边形BCED是平行四边形,DE=BC.
【题目】根据国家发改委实施“阶梯电价”的有关文件要求,某市结合地方实际,决定对居民生活用电实行“阶梯电价”收费,具体收费标准见表:
一户居民一个月用电量的范围 | 电费价格(单位:元/度) |
不超过200度 | a |
超过200度的部分 | b |
已知4月份,该市居民甲用电250度,交电费130元;居民乙用电400度,交电费220元.
(1)求出表中a和b的值;
(2)实行“阶梯电价”收费以后,该市一户居民月用电多少度时,其当月的平均电价每度不超过0.56元?
【题目】甲、乙两位同学本学期11次考试的测试成绩如下:
甲 | 98 | 100 | 100 | 90 | 96 | 91 | 89 | 99 | 100 | 100 | 93 |
乙 | 98 | 99 | 96 | 94 | 95 | 92 | 92 | 98 | 96 | 99 | 97 |
(1) 他们的平均成绩和方差各是多少?
(2) 分析他们的成绩各有什么特点?
(3) 现要从两人中选一人参加比赛,历届比赛成绩表明,平时成绩达到98分以上才可能进入决赛,你认为应选谁参加这次比赛?为什么?