题目内容
【题目】某公司生产的商品的市场指导价为每件150元,公司的实际销售价格可以浮动x个百分点(即销售价格=150(1+x%)),经过市场调研发现,这种商品的日销售量y(件)与销售价格浮动的百分点x之间的函数关系为y=﹣2x+24.若该公司按浮动﹣12个百分点的价格出售,每件商品仍可获利10%.
(1)求该公司生产销售每件商品的成本为多少元?
(2)当实际销售价格定为多少元时,日销售利润为660元?(说明:日销售利润=(销售价格一成本)×日销售量)
(3)该公司决定每销售一件商品就捐赠a元利润(a≥1)给希望工程,公司通过销售记录发现,当价格浮动的百分点大于﹣2时,扣除捐赠后的日销售利润随x增大而减小,直接写出a的取值范围.
【答案】(1)该公司生产销售每件商品的成本为120元;(2)商品定价为每件135元或153元,日销售利润为660元;(3)1≤a≤6.
【解析】
(1)设该公司生产销售每件商品的成本为z元,根据该公司按浮动-12个百分点的价格出售,每件商品仍可获利10%列出方程,求出方程的解得到z的值,即为每件商品的成本;
(2)根据日销售利润=(销售价格一成本)×日销售量,由日销售利润为660元列出关于x的方程,求出方程的解即可得到结果;
(3)根据题意确定出a的范围即可.
(1)设该公司生产销售每件商品的成本为z元,
依题意得:150(1﹣12%)=(1+10%)z,
解得:z=120,
答:该公司生产销售每件商品的成本为120元;
(2)由题意得(﹣2x+24)[150(1+x%)﹣120]=660,
整理得:x2+8x﹣20=0,
解得:x1=2,x2=﹣10,
此时,商品定价为每件135元或153元,日销售利润为660元;
(3)根据题意得,设捐赠后的利润为w,则:
整理得:,
∵当价格浮动的百分点大于﹣2时,扣除捐赠后的日销售利润随x增大而减小,
即当,w随x增大而减小,
∴对称轴为:,
解得:,
∴,
∵
∴的取值范围是:1≤a≤6.