题目内容
【题目】已知等边△ABC的边长为12,D是AB上的动点,过D作DE⊥AC于点E,过E作EF⊥BC于点F,过F作FG⊥AB于点G.当G与D重合时,AD的长是( )
A.3
B.4
C.8
D.9
【答案】C
【解析】解:如图,
设BD=x,
∵△ABC是等边三角形,
∴∠A=∠B=∠C=60°,
∵DE⊥AC于点E,EF⊥BC于点F,FG⊥AB,
∴∠BDF=∠DEA=∠EFC=90°,
∴BF=2x,
∴CF=12﹣2x,
∴CE=2CF=24﹣4x,
∴AE=12﹣CE=4x﹣12,
∴AD=2AE=8x﹣24,
∵AD+BD=AB,
∴8x﹣24+x=12,
∴x=4,
∴AD=8x﹣24=32﹣24=8.
故选C.
【考点精析】通过灵活运用等边三角形的性质和含30度角的直角三角形,掌握等边三角形的三个角都相等并且每个角都是60°;在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半即可以解答此题.
练习册系列答案
相关题目