题目内容

【题目】如图,在正方形ABCD中,点G在对角线BD上(不与点B,D重合),GE⊥DC于点E,GF⊥BC于点F,连结AG.

(1)写出线段AG,GE,GF长度之间的数量关系,并说明理由;
(2)若正方形ABCD的边长为1,∠AGF=105°,求线段BG的长.

【答案】
(1)

解:结论:AG2=GE2+GF2

理由:连接CG.

∵四边形ABCD是正方形,

∴A、C关于对角线BD对称,

∵点G在BD上,

∴GA=GC,

∵GE⊥DC于点E,GF⊥BC于点F,

∴∠GEC=∠ECF=∠CFG=90°,

∴四边形EGFC是矩形,

∴CF=GE,

在Rt△GFC中,∵CG2=GF2+CF2

∴AG2=GF2+GE2


(2)

解:作BN⊥AG于N,在BN上截取一点M,使得AM=BM.设AN=x.

∵∠AGF=105°,∠FBG=∠FGB=∠ABG=45°,

∴∠AGB=60°,∠GBN=30°,∠ABM=∠MAB=15°,

∴∠AMN=30°,

∴AM=BM=2x,MN= x,

在Rt△ABN中,∵AB2=AN2+BN2

∴1=x2+(2x+ x)2

解得x=

∴BN=

∴BG=BN÷cos30°=


【解析】(1)结论:AG2=GE2+GF2 . 只要证明GA=GC,四边形EGFC是矩形,推出GE=CF,在Rt△GFC中,利用勾股定理即可证明;
(2)作BN⊥AG于N,在BN上截取一点M,使得AM=BM.设AN=x.易证AM=BM=2x,MN= x,在Rt△ABN中,根据AB2=AN2+BN2 , 可得1=x2+(2x+ x)2 , 解得x= ,推出BN= ,再根据BG=BN÷cos30°即可解决问题;
【考点精析】掌握勾股定理的概念和正方形的性质是解答本题的根本,需要知道直角三角形两直角边a、b的平方和等于斜边c的平方,即;a2+b2=c2;正方形四个角都是直角,四条边都相等;正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角;正方形的一条对角线把正方形分成两个全等的等腰直角三角形;正方形的对角线与边的夹角是45o;正方形的两条对角线把这个正方形分成四个全等的等腰直角三角形.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网