题目内容
【题目】(1)(观察思考):
如图,线段上有两个点,图中共有_________条线段;
(2)(模型构建):
如果线段上有个点(包括线段的两个端点),则该线段上共有___________条线段;
(3)(拓展应用):
某班8位同学参加班上组织的象棋比赛,比赛采用单循环制(即每两位同学之间都要进行一场比赛),那么一共要进行__________场比赛.
【答案】解:(1)6;(2);(3)28
【解析】
(1)从左向右依次固定一个端点A、D、C找出线段,再求和即可;
(2)根据数线段的特点列出式子并化简,就能解答本问;
(3)将实际问题转化成(2)的模型,借助(2)的结论解答.
(1)∵以点A为左端点向右的线段有:线段AB、AC、AD,
以点D为左端点向右的线段有线段DC、DB,
以点C为左端点的线段有线段CB,
∴共有3+2+1=6条线段;
故答案为:6
(2).理由如下:
设线段上有m个点,该线段上共有线段x条,
则x=(m-1)+(m-2)+(m-3)+…+3+2+1①
∴倒序排列有x=1+2+3+…+(m-3)+(m-2)+(m-1)②
+②得:2x=m(m-1),
,
故有条线段;
故答案为:
(3)把8位同学看作直线上的8个点,每两位同学之间的一场象棋比赛看作为一条线段,
直线上8个点所构成的线段条数就等于象棋比赛的场数,
因此一共要进行(场)
故答案为:28
练习册系列答案
相关题目