题目内容
如图,矩形ABCD中,AB=20,BC=10,点P为AB边上一动点,DP交AC于点Q.
(1)求证:△APQ∽△CDQ;
(2)P点从A点出发沿AB边以每秒1个单位的速度向B点移动,移动时间为t秒.
①当t为何值时,DP⊥AC?
②设,写出y与t之间的函数解析式,并探究P点运动到第几秒到第几秒之间时,y取得最小值.
(1)证明见解析;(2)①5;②,8-9.
解析试题分析:(1)如图,由矩形的性质求出∠1=∠2,∠3=∠4即可证明△APQ∽△CDQ.
(2)①当DP⊥AC时,由△ADC∽△PAD列比例式可求解.
②根据相似,求出两个三角形的高(用t的代数式表示),即可求出y与t之间的函数解析式;列表求出函数值得出P点运动到第8秒到第9秒之间时,y取得最小值.
试题解析:(1)如图,∵四边形ABCD是矩形,∴AB∥CD. ∴∠1=∠2,∠3=∠4.
∴△APQ∽△CDQ.
(2)①当DP⊥AC时,∴∠4+∠2=90 o.
又∵∠5+∠2=90 o,∴∠4=∠5.
又∵∠ADC=∠DAP=90 o,∴△ADC∽△PAD.∴,即.∴PA=5.
∵P点从A点出发沿AB边以每秒1个单位的速度向B点移动,∴t=5.
②设△APQ的边AP上的高为h,则△DCQ的边上的高为.
∵由(1)△APQ∽△CDQ,∴.∴.∴.
∴,.
∴.
∴y与t之间的函数解析式为.
给出t的部分取值,计算出y的对应值列表如下:t 0 1 2 3 4 5 6 7 8 9 10 y 100 95.48 91.88 88.91 86.67 85 83.85 83.15 82.86 82.93 83.33 t 11