题目内容
【题目】甲乙两人同时登山,甲乙两人距地面的高度y(米)与登山时间x(分)之间的函数图象如图所示,根据图象所提供的信息解答下列问题:
(1)甲登山的速度是 米/分钟,乙在A地提速时距地面的高度b为 米.
(2)若乙提速后,乙的速度是甲登山速度的3倍,请求出乙提速后y和x之间的函数关系式.
(3)登山多长时间时,乙追上了甲,此时乙距A地的高度为多少米?
【答案】(1)10,30;(2)y=30x﹣30;(3)登山6.5分钟,乙追上了甲,此时乙距A地的高度为135米.
【解析】
根据函数图象由甲走的路程除以时间就可以求出甲的速度;根据函数图象可以求出乙在提速前每分离开地面的高度是15米,就可以求出b的值;
(2)先根据乙的速度求出乙登上山顶的时间,求出B点的坐标,由待定系数法就可以求出解析式;
(3)由(2)的解析式建立方程求出其解就可以求出追上的时间,就可以求出乙离地面的高度,再减去A地的高度就可以得出结论.
解:(1)10,30
(2)设乙提速后的函数关系式为:y=kx+b,
由于乙提速后是甲的3倍,所以k=30,且图象经过(2.30)
所以30=2×30+b
解得:b=﹣30
所以乙提速后的关系式:y=30x﹣30.
(3)甲的关系式:设甲的函数关系式为:y=mx+n,
将n=100和点(20,300)代入,
求得 y=10x+100;
由题意得:10x+100=30x﹣30
解得:x=6.5 ,
把x=6.5代入y=10x+100=165,
相遇时乙距A地的高度为:165﹣30=135(米)
答:登山6.5分钟,乙追上了甲,此时乙距A地的高度为135米.
练习册系列答案
相关题目