题目内容
【题目】甲、乙两家超市进行促销活动,甲超市采用“买100减50”的促销方式,即购买商品的总金额满100元但不足200元,少付50元;满200元但不足300元,少付100元;….乙超市采用“打6折”的促销方式,即顾客购买商品的总金额打6折.
(1)若顾客在甲商场购买商品的总金额为x(100≤x<200)元,优惠后得到商家的优惠率为p(p= ),写出p与x之间的函数关系式,并说明p随x的变化情况;
(2)王强同学认为:如果顾客购买商品的总金额超过100元,实际上甲超市采用“打5折”、乙超市采用“打6折”,那么当然选择甲超市购物.请你举例反驳;
(3)品牌、质量、规格等都相同的某种商品,在甲乙两商场的标价都是x(300≤x<400)元,认为选择哪家商场购买商品花钱较少?请说明理由.
【答案】
(1)解:∵购买商品的总金额满100元但不足200元,少付50元;
∴优惠金额为50元,
∴P= (100≤x<200),p随x的增大而减小
(2)解:在100≤x<200的范围内,取x>125的值时,都是选乙超市花钱较少,
如:当x=130时,在甲超市花130﹣50=80(元);
在乙超市花130×0.6=78(元),
注:在其它范围也可,说甲不是“打5折”也可
(3)解:当300≤x<400时在甲超市购买商品应付款y1=x﹣150,
在乙超市购买商品应付款y2=0.6x.
分三种情况:
①x﹣150=0.6x时,即x=375,在两家商场购买商品花钱一样;
②当x﹣150>0.6x时,即375<x<400,在乙商场购买商品花钱较少;
③当x﹣150<0.6x时,即300≤x<375,在甲商场购买商品花钱较少
【解析】(1)根据商家的优惠率即可列出p与x之间的函数关系式,并能得出p随x的变化情况;(2)在100≤x<200的范围内,取x>125的值时,都是选乙超市花钱较少,如:当x=130时,在甲超市花130﹣50=80(元);在乙超市花130×0.6=78(元),即可解答;(3)当300≤x<400时在甲超市购买商品应付款y1=x﹣150,在乙超市购买商品应付款y2=0.6x;分三种情况讨论:①x﹣150=0.6x时;②当x﹣150>0.6x时;③当x﹣150<0.6x时,即可解答.