题目内容
【题目】某超市销售一种商品,成本每千克40元,规定每千克售价不低于成本,且不高于80元,经市场调查,每天的销售量y(千克)与每千克售价x(元)满足一次函数关系,部分数据如下表:
售价x(元/千克) | 50 | 60 | 70 |
销售量y(千克) | 100 | 80 | 60 |
(1)求y与x之间的函数表达式;
(2)设商品每天的总利润为W(元),则当售价x定为多少元时,厂商每天能获得最大利润?最大利润是多少?
(3)如果超市要获得每天不低于1350元的利润,且符合超市自己的规定,那么该商品每千克售价的取值范围是多少?请说明理由.
【答案】(1)y=﹣2x+200 (40≤x≤80);(2)售价为70元时获得最大利润,最大利润是1800元;(3)55≤x≤80,理由见解析
【解析】
(1)待定系数法求解可得;
(2)根据“总利润=每千克利润×销售量”可得函数解析式,将其配方成顶点式即可得最值情况.
(3)求得W=1350时x的值,再根据二次函数的性质求得W≥1350时x的取值范围,继而根据“每千克售价不低于成本且不高于80元”得出答案.
(1)设y=kx+b,
将(50,100)、(60,80)代入,得:
,
解得:,
∴y=﹣2x+200 (40≤x≤80);
(2)W=(x﹣40)(﹣2x+200)
=﹣2x2+280x﹣8000
=﹣2(x﹣70)2+1800,
∴当x=70时,W取得最大值为1800,
答:售价为70元时获得最大利润,最大利润是1800元.
(3)当W=1350时,得:﹣2x2+280x﹣8000=1350,
解得:x=55或x=85,
∵该抛物线的开口向下,
所以当55≤x≤85时,W≥1350,
又∵每千克售价不低于成本,且不高于80元,即40≤x≤80,
∴该商品每千克售价的取值范围是55≤x≤80.
【题目】我市某校开展了以“梦想中国”为主题的摄影大赛,要求参赛学生每人交一件作品.现将
从中挑选的50件参赛作品的成绩(单位:分)统计如下:
等级 | 成绩(用m表示) | 频数 | 频率 |
A | 90≤ m ≤100 | x | 0.08 |
B | 80≤ m <90 | 34 | y |
C | m <80 | 12 | 0.24 |
合计 | 50 | 1 |
请根据上表提供的信息,解答下列问题:
(1)表中的值为_____________,的值为______________;(直接填写结果)
(2)将本次参赛作品获得A等级的学生依次用A1、A2、A3……表示.现该校决定从本次参赛作品获得A等级的学生中,随机抽取两名学生谈谈他们的参赛体会,则恰好抽到学生A1和A2的概率为____________.(直接填写结果)