题目内容

【题目】已知正方形的边长是是等边三角形,点上,点上,则的边长是( )

A. B. C. D.

【答案】C

【解析】

根据正方形及等边三角形的性质易证△ABP≌△ADQ,即可得BP=DQ,所以PC=CQ;设BP的长为xcm,则PC=CQ=(10-x)cm,Rt△ABP中根据勾股定理可得AP= cm;Rt△PCQ中根据勾股定理可列方程,解方程求得x的值,即可求得BP的长.

正方形ABCD,△APQ是等边三角形,

∴AB=BC=CD=DA,∠B=∠D=90°,AP=AQ=PQ,

∴△ABP≌△ADQ,

∴BP=DQ,

∴PC=CQ,

BP的长为xcm,则PC=CQ=(10-x)cm,

Rt△ABP中,AP= cm,

Rt△PCQ中,PQcm,CP=CQ=(10-x)cm,

∴,

解得:x1=20-10,x2=20+10>10(舍去)

∴BP的边长是(20-10)cm.

故选C.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网