题目内容
【题目】如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于A、B两点,B点的坐标为(3,0),与y轴交于点C(0,﹣3),点P是直线BC下方抛物线上的任意一点。
(1)求这个二次函数y=x2+bx+c的解析式。
(2)连接PO,PC,并将△POC沿y轴对折,得到四边形POP′C,如果四边形POP′C为菱形,求点P的坐标。
【答案】(1)二次函数的解析式为;(2)P()时,四边形POP′C为菱形.
【解析】
(1)将点B、C的坐标代入解方程组即可得到函数解析式;
(2)根据四边形POP′C为菱形,得到,且与OC互相垂直平分,可知点P的纵坐标为,将点P的纵坐标代入解析式即可得到横坐标,由此得到答案.
(1)将点B(3,0)、C(0,﹣3)的坐标代入y=x2+bx+c,得
,∴
∴二次函数的解析式为;
(2)如图,
令中x=0,得y=-3,
∴C(0,-3)
∵四边形POP′C为菱形,
∴,且与OC互相垂直平分,
∴点P的纵坐标为,
当y=时, ,
得: ,
∵点P是直线BC下方抛物线上的任意一点,
∴P()时,四边形POP′C为菱形.
练习册系列答案
相关题目