题目内容
【题目】已知:如图,平行四边形ABCD的对角线相交于点O,点E在边BC的延长线上,且OE=OB,联结DE.
(1)求证:DE⊥BE;
(2)如果OE⊥CD,求证:BD CE=CD DE.
【答案】(1)证明见解析;(2)证明见解析.
【解析】
试题分析:(1)由平行四边形的性质得到BO=BD,由等量代换推出OE=BD,根据平行四边形的判定即可得到结论;
(2)根据等角的余角相等,得到∠CEO=∠CDE,推出△BDE∽△CDE,即可得到结论.
试题解析:(1)∵四边形ABCD是平行四边形,
∴BO=OD,
∵OE=OB,
∴OE=OD,
∴∠OBE=∠OEB,∠OED=∠ODE,
∵∠OBE+∠OEB+∠OED+∠ODE=180°,
∴∠BEO+∠DEO=∠BED=90°,
∴DE⊥BE;
(2)∵OE⊥CD
∴∠CEO+∠DCE=∠CDE+∠DCE=90°,
∴∠CEO=∠CDE,
∵OB=OE,
∴∠DBE=∠CDE,
∵∠BED=∠BED,
∴△BDE∽△DCE,
∴,
∴BD CE=CD DE.
练习册系列答案
相关题目