题目内容
【题目】如图,数轴上两点分别表示有理数2和5,我们用来表示两点之间的距离.
(1)直接写出的值=______;
(2)若数轴上一点表示有理数m,则的值是______;
(3)当代数式∣n +2∣+∣n 5∣的值取最小值时,写出表示n的点所在的位置;
(4)若点分别以每秒2个单位长度和每秒3个单位长度的速度同时向数轴负方向运动,求经过多少秒后,点到原点的距离是点到原点的距离的2倍.
【答案】(1)7;(2);(3);(4)1秒或3秒
【解析】
(1)根据两点间距离公式求解即可;
(2)根据两点间距离公式求解即可;
(3)根据n+2和n-5以及两点间距离公式,即可得出n的取值范围;
(4)设经过x秒后点A到原点的距离是点B到原点的距离的2倍,利用两点间距离公式分两种情况列出方程,求解即可.
解:(1)
故答案为:7
(2)
(3)n点位于线段AB上(包括A、B两点),即时有最小值7;
即:
(4)设经过x秒后点A到原点的距离是点B到原点的距离的2倍,
第一种情况:2+2x=2(5-3x),解得:x=1
第二种情况:2+2x=2(3x-5),解得:x=3
答:经过1秒或3秒后点A到原点的距离是点B到原点的距离的2倍.
练习册系列答案
相关题目
【题目】为了保护环境,某开发区综合治理指挥部决定购买A,B两种型号的污水处理设备共10台.已知用90万元购买A型号的污水处理设备的台数与用75万元购买B型号的污水处理设备的台数相同,每台设备价格及月处理污水量如下表所示:
污水处理设备 | A型 | B型 |
价格(万元/台) | m | m-3 |
月处理污水量(吨/台) | 220 | 180 |
(1)求m的值;
(2)由于受资金限制,指挥部用于购买污水处理设备的资金不超过165万元,问有多少种购买方案?并求出每月最多处理污水量的吨数.