题目内容

【题目】已知,如图,A是⊙O上一点,半径OC的延长线与过点A的直线交于B点,OC=BC,AC= OB.
(1)求证:AB是⊙O的切线;
(2)若∠ACD=45°,OC=2,求弦AD的长.

【答案】
(1)证明:如图连接OA.

∵AC= OB,OC=CB,

∴AC=OC=CB,

∴∠OAB=90°,

∴AB是⊙O的切线.


(2)解:连接OD.

∵∠DAO=2∠DCA,∠DCA=45°,

∴∠DOA=90°,∵OD=OA=OC=2,

∴AD= = =2


【解析】(1)根据如果一个三角形一边上的中线等于这边的一半,这个三角形是直角三角形,即可判断∠OAB=90°,即可解决问题.(2)只要证明∠DOA=90°,利用勾股定理即可解决问题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网