题目内容

【题目】如图,△ABC中,AB=AC=5,BC=6,ADBC,E、F分别为AC、AD上两动点,连接CF、EF,则CF+EF的最小值为____

【答案】

【解析】

BMACM,交ADF,根据三线合一定理求出BD的长和ADBC,根据三角形面积公式求出BM,根据对称性质求出BF=CF,根据垂线段最短得出CF+EFBM,即可得出答案.

BMACM,交ADF,

AB=AC=5,BC=6,ADBC边上的中线,

BD=DC=3,ADBC,AD平分∠BAC,

B、C关于AD对称,

BF=CF,

根据垂线段最短得出:CF+EF=BF+EFBF+FM=BM,

CF+EFBM,

SABC=×BC×AD=×AC×BM,

BM=

CF+EF的最小值是

故答案为:

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网