题目内容
【题目】如图,防洪大堤的横截面ABGH是梯形,背水坡AB的坡度i=1:(垂直高度AE与水平宽度BE的比),AB=20米,BC=30米,身高为1.7米的小明(AM=1.7米)站在大堤A点(M,A,E三点在同一条直线上),测得电线杆顶端D的仰角∠=20°.
(1)求∠ABC;
(2)求电线杆CD的高度.(结果精确到个位,参考数据sin20°≈0.3,cos20°≈0.9,tan20°≈0.4,≈1.7)
【答案】(1)150°;(2)31米.
【解析】
(1)根据坡度的定义,利用三角函数即可求得坡角,再求出∠ABC即可;
(2)由i的值求得大堤的高度h,点A到点B的水平距离a,从而求得MN的长度,由仰角求得DN的高度,从而由DN,AM,h求得高度CD.
解:(1)∵i=1:
∴tan∠ABE=i=1:
∴∠ABE=30°
∴∠ABC=150°
(2)过M点作MN垂直于CD的于点N.
∵AB=20m,∠ABE=30°,
∴AE=AB=×20=10,
BE=ABcos30°=20×=10,
∴CN=AE+AM=10+1.7=11.7,
MN=CB+BE=30+10,
∵∠NMD=20°,MN=30+10,
∴DN=MNtan20°=(30+10)×0.4=12+4,
∴CD=CN+DN=11.7+12+4=23.7+4≈31.
答:电线杆CD的高度约为31米.
练习册系列答案
相关题目