题目内容
【题目】如图,在Rt△ABC中,∠C=90°,以BC为直径的⊙O交AB于点D,切线DE交AC于点E.
(1)求证:∠A=∠ADE;
(2)若AD=16,DE=10,求BC的长.
【答案】(1)见解析;(2)15.
【解析】
(1)只要证明∠A+∠B=90°,∠ADE+∠B=90°即可解决问题;
(2)首先证明AC=2DE=20,在Rt△ADC中,DC==12,
设BD=x,在Rt△BDC中,BC2=x2+122,在Rt△ABC中,BC2=(x+16)2-202,可得x2+122=(x+16)2-202,解方程即可解决问题.
(1)证明:连接OD,
∵DE是切线,
∴∠ODE=90°,
∴∠ADE+∠BDO=90°,
∵∠ACB=90°,
∴∠A+∠B=90°,
∵OD=OB,
∴∠B=∠BDO,
∴∠ADE=∠A.
(2)连接CD.
∵∠ADE=∠A,
∴AE=DE,
∵BC是⊙O的直径,∠ACB=90°,
∴EC是⊙O的切线,
∴ED=EC,
∴AE=EC,
∵DE=10,
∴AC=2DE=20,
在Rt△ADC中,DC==12,
设BD=x,在Rt△BDC中,BC2=x2+122,在Rt△ABC中,BC2=(x+16)2﹣202,
∴x2+122=(x+16)2﹣202,
解得x=9,
∴BC==15.
练习册系列答案
相关题目
【题目】已知二次函数y=ax2+bx+c的y与x的部分对应值如下表:
x | -1 | 0 | 1 | 3 |
y | -3 | 1 | 3 | 1 |
下列结论:①抛物线的开口向下;②其图象的对称轴为x=1;③当x<1时,函数值y随x的增大而增大;④方程ax2+bx+c=0有一个根大于4,其中正确的结论有( )
A. 1个 B. 2个 C. 3个 D. 4个