题目内容
【题目】如图,△ABC中,∠BAC=90°,AB=AC=1,点D是BC上一个动点(不与B、C重合),在AC上取E点,使∠ADE=45度.
(1)求证:△ABD∽△DCE;
(2)设BD=x,AE=y,求y关于x的函数关系式;
(3)当:△ADE是等腰三角形时,求AE的长.
【答案】(1)见解析;(2)y=x2﹣x+1.(3)AE的长为2﹣或.
【解析】
试题分析:此题有三问,(1)证明△ABD∽△DCE,已经有∠B=∠C,只需要再找一对角相等就可以了;
(2)由(1)证得△ABD∽△DCE,有相似就线段成比例,于是利用(1)的结果可证得(2);
(3)当△ABD∽△DCE时,可能是DA=DE,也可能是ED=EA,所以要分两种情况证明结论.
(1)证明:∵△ABC中,∠BAC=90°,AB=AC=1,
∴∠ABC=∠ACB=45°.
∵∠ADE=45°,
∴∠BDA+∠CDE=135°.
又∠BDA+∠BAD=135°,
∴∠BAD=∠CDE.
∴△ABD∽△DCE.
(2)解:∵△ABD∽△DCE,
∴;
∵BD=x,
∴CD=BC﹣BD=﹣x.
∴,
∴CE=x﹣x2.
∴AE=AC﹣CE=1﹣(x﹣x2)=x2﹣x+1.
即y=x2﹣x+1.
(3)解:∠DAE<∠BAC=90°,∠ADE=45°,
∴当△ADE是等腰三角形时,第一种可能是AD=DE.
又∵△ABD∽△DCE,
∴△ABD≌△DCE.
∴CD=AB=1.
∴BD=﹣1.
∵BD=CE,
∴AE=AC﹣CE=2﹣.
当△ADE是等腰三角形时,第二种可能是ED=EA.
∵∠ADE=45°,
∴此时有∠DEA=90°.
即△ADE为等腰直角三角形.
∴AE=DE=AC=.
当AD=EA时,点D与点B重合,不合题意,所以舍去,
因此AE的长为2﹣或.
练习册系列答案
相关题目