题目内容

如图,在平行四边形ABCD中,AB=5,BC=10,F为AD的中点,CE⊥AB于E,设∠ABC=α(60°≤α<90°).

(1)当α=60°时,求CE的长;
(2)当60°<α<90°时,
①是否存在正整数k,使得∠EFD=k∠AEF?若存在,求出k的值;若不存在,请说明理由.
②连接CF,当CE2-CF2取最大值时,求tan∠DCF的值.

(1) 5;(2) k=3,.

解析试题分析:(1)利用60°角的正弦值列式计算即可得解;
(2)①连接CF并延长交BA的延长线于点G,利用“角边角”证明△AFG和△DFC全等,根据全等三角形对应边相等可得CF=GF,AG=CD,再利用直角三角形斜边上的中线等于斜边的一半可得EF=GF,再根据AB、BC的长度可得AG=AF,然后利用等边对等角的性质可得∠AEF=∠G=∠AFG,根据三角形的一个外角等于与它不相邻的两个内角的和可得∠EFC=2∠G,然后推出∠EFD=3∠AEF,从而得解;
②设BE=x,在Rt△BCE中,利用勾股定理表示出CE2,表示出EG的长度,在Rt△CEG中,利用勾股定理表示出CG2,从而得到CF2,然后相减并整理,再根据二次函数的最值问题解答.
试题解析:(1)∵=60°,BC=10,
∴sin=
即sin60°=,解得CE=5
(2)①存在k=3,使得∠EFD=k∠AEF.理由如下:
连接CF并延长交BA的延长线于点G,

∵F为AD的中点,
∴AF=FD,
在平行四边形ABCD中,AB∥CD,
∴∠G=∠DCF,
在△AFG和△DFC中,

∴△AFG≌△DFC,
∴CF=GF,AG=CD,
∵CE⊥AB,
∴EF=GF,
∴∠AEF=∠G,
∵AB=5,BC=10,点F是AD的中点,
∴AG=5,AF=AD=BC=5,
∴AG=AF,
∴∠AFG=∠G,
在△EFG中,∠EFC=∠AEF+∠G=2∠AEF,
又∵∠CFD=∠AFG,
∴∠CFD=∠AEF,
∴∠EFD=∠EFC+∠CFD=2∠AEF+∠AEF=3∠AEF,
因此,存在正整数k=3,使得∠EFD=3∠AEF;
②设BE=x,∵AG=CD=AB=5,
∴EG=AE+AG=5-x+5=10-x,
在Rt△BCE中,CE2=BC2-BE2=100-x2
在Rt△CEG中,CG2=EG2+CE2=(10-x)2+100-x2=200-20x,
∵由①知CF=GF,
∴CF2=(CG)2=CG2=(200-20x)=50-5x,
∴CE2-CF2=100-x2-50+5x=-x2+5x+50=-(x-2+50+
∴当x=,即点E是AB的中点时,CE2-CF2取最大值,此时,EG=10-x=10-=
CE=
所以,tan∠DCF=tan∠G= 
考点: 1.平行四边形的性质;2.二次函数的最值;3.勾股定理.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网