题目内容

【题目】如图1,点O为直线AB上一点,过点O作射线OC,使∠BOC=120°.将一直角三角板的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.
(1)将图1中的三角板绕点O逆时针旋转至图2,使一边OM在∠BOC的内部,且恰好平分∠BOC.问:此时直线ON是否平分∠AOC?请说明理由.
(2)将图1中的三角板绕点O以每秒6°的速度沿逆时针方向旋转一周,在旋转的过程中,第t秒时,直线ON恰好平分锐角∠AOC,则t的值为_________(直接写出结果).
(3)将图1中的三角板绕点O顺时针旋转至图3,使ON在∠AOC的内部,请探究:

∠AOM与∠NOC之间的数量关系,并说明理由。

【答案】(1) ON平分∠AOC.理由见解析;(2)40或10,(3)∠AOM -∠NOC=30°.理由见解析.

【解析】试题分析:(1)由角的平分线的定义和等角的余角相等求解;

(2)由∠BOC=120°可得∠AOC=60°,则∠RON=30°,即旋转60°240°ON平分∠AOC,据此求解;

(3)因为∠MON=90°AOC=60°,所以∠AOM=90°-AON、NOC=60°-AON,然后作差即可.

试题解析:(1)直线ON平分∠AOC.理由:

ON的反向延长线为OD,

∵OM平分∠BOC,

∴∠MOC=∠MOB,

又∵OM⊥ON,

∴∠MOD=∠MON=90°,

∴∠COD=∠BON,

又∵∠AOD=∠BON(对顶角相等),

∴∠COD=∠AOD,

∴OD平分∠AOC,

即直线ON平分∠AOC.

(2)∵∠BOC=120°

∴∠AOC=60°,

∴∠BON=∠COD=30°,

即旋转60°时ON平分∠AOC,

由题意得,6t=60°或240°,

∴t=1040;

(3)∵∠MON=90°,∠AOC=60°,

∴∠AOM=90°-∠AON、∠NOC=60°-∠AON,

∴∠AOM-∠NOC=(90°-∠AON)-(60°-∠AON)=30°.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网