题目内容
【题目】如图①,已知抛物线y=ax2+bx+3(a≠0)与x轴交于点A(1,0)和点B(﹣3,0),与y轴交于点C.
(1)求抛物线的解析式;
(2)设抛物线的对称轴与x轴交于点M,问在对称轴上是否存在点P,使△CMP为等腰三角形?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由;
(3)如图②,若点E为第二象限抛物线上一动点,连接BE、CE,求四边形BOCE面积的最大值,并求此时E点的坐标.
【答案】
(1)
解:∵抛物线y=ax2+bx+3(a≠0)与x轴交于点A(1,0)和点B(﹣3,0),
∴
解得:
∴所求抛物线解析式为:
y=﹣x2﹣2x+3;
(2)
解:∵抛物线解析式为:
y=﹣x2﹣2x+3,
∴其对称轴为x= =﹣1,
∴设P点坐标为(﹣1,a),当x=0时,y=3,
∴C(0,3),M(﹣1,0)
∴当CP=PM时,(﹣1)2+(3﹣a)2=a2,解得a= ,
∴P点坐标为:P1(﹣1, );
∴当CM=PM时,(﹣1)2+32=a2,解得a=± ,
∴P点坐标为:P2(﹣1, )或P3(﹣1,﹣ );
∴当CM=CP时,由勾股定理得:(﹣1)2+32=(﹣1)2+(3﹣a)2,解得a=6,
∴P点坐标为:P4(﹣1,6)
综上所述存在符合条件的点P,其坐标为P(﹣1, )或P(﹣1,﹣ )
或P(﹣1,6)或P(﹣1, )
(3)
解:过点E作EF⊥x轴于点F,设E(a,﹣a2﹣2a+3)(﹣3<a<0)
∴EF=﹣a2﹣2a+3,BF=a+3,OF=﹣a
∴S四边形BOCE= BFEF+ (OC+EF)OF
= (a+3)(﹣a2﹣2a+3)+ (﹣a2﹣2a+6)(﹣a)
=
=﹣ +
∴当a=﹣ 时,S四边形BOCE最大,且最大值为 .
此时,点E坐标为(﹣ , ).
【解析】(1)已知抛物线过A、B两点,可将两点的坐标代入抛物线的解析式中,用待定系数法即可求出二次函数的解析式;(2)可根据(1)的函数解析式得出抛物线的对称轴,也就得出了M点的坐标,由于C是抛物线与y轴的交点,因此C的坐标为(0,3),根据M、C的坐标可求出CM的距离.然后分三种情况进行讨论:①当CP=PM时,P位于CM的垂直平分线上.求P点坐标关键是求P的纵坐标,过P作PQ⊥y轴于Q,如果设PM=CP=x,那么直角三角形CPQ中CP=x,OM的长,可根据M的坐标得出,CQ=3﹣x,因此可根据勾股定理求出x的值,P点的横坐标与M的横坐标相同,纵坐标为x,由此可得出P的坐标.②当CM=MP时,根据CM的长即可求出P的纵坐标,也就得出了P的坐标(要注意分上下两点).③当CM=CP时,因为C的坐标为(0,3),那么直线y=3必垂直平分PM,因此P的纵坐标是6,由此可得出P的坐标;(3)由于四边形BOCE不是规则的四边形,因此可将四边形BOCE分割成规则的图形进行计算,过E作EF⊥x轴于F,四边形BOCE的面积=三角形BFE的面积+直角梯形FOCE的面积.直角梯形FOCE中,FO为E的横坐标的绝对值,EF为E的纵坐标,已知C的纵坐标,就知道了OC的长.在三角形BFE中,BF=BO﹣OF,因此可用E的横坐标表示出BF的长.如果根据抛物线设出E的坐标,然后代入上面的线段中,即可得出关于四边形BOCE的面积与E的横坐标的函数关系式,根据函数的性质即可求得四边形BOCE的最大值及对应的E的横坐标的值.即可求出此时E的坐标.