题目内容
如图,点G是正方形ABCD对角线CA的延长线上任意一点,以线段AG为边作一个正方形AEFG,线段EB和GD相交于点H.若AB=,AG=1,则EB= .
.
试题分析:连接BD交AC于O,
∵四边形ABCD、AGFE是正方形,
∴AB=AD,AE=AG,∠DAB=∠EAG,
∴∠EAB=∠GAD,
在△AEB和△AGD中,
,
∴△EAB≌△GAD(SAS),
∴EB=GD,
∵四边形ABCD是正方形,AB=,
∴BD⊥AC,AC=BD=AB=2,
∴∠DOG=90°,OA=OD=BD=1,
∵AG=1,
∴OG=OA+AG=2,
∴GD=,
∴EB=.
故答案是.
练习册系列答案
相关题目