题目内容
【题目】如图,已知:梯形ABCD中,∠ABC=90°,∠DAB=45°,AB∥DC,DC=3,AB=5,点P在AB边上,以点A为圆心AP为半径作弧交边DC于点E,射线EP于射线CB交于点F.
(1)若AP,求DE的长;
(2)联结CP,若CP=EP,求AP的长;
(3)线段CF上是否存在点G,使得△ADE与△FGE相似?若相似,求FG的值;若不相似,请说明理由.
【答案】(1)1;(2)AP;(3)FG=31.
【解析】
(1)如图,过点A,作AH//BC,交CD的延长线于点H,在Rt△AHE中求出AE,即可求解;
(2)设:AP=x,利用△APE∽△PEC,得出PC2=CEAP,利用勾股定理得出PC2=PB2+BC2,即可求解;
(3)利用△ADE∽△FGE,得到3α=45°,进而求出相应线段的长度,再利相似比,即可求解.
解:(1)如图1中,过点A,作AH∥BC,交CD的延长线于点H.
∵AB∥CD,
∴∠ABC+∠C=180°,
∵∠ABC=90°,
∴∠C=∠ABC=∠H=90°,
∴四边形AHCB是矩形,
∴AB=CH=5,∵CD=3,
∴DH=CH﹣CD=2,
∵∠HAB=90°,∠DAB=45°,
∴∠HAD=∠HDA=45°
∴HD=AH=2,AE=AP,
根据勾股定理得,HE3,则ED=1;
(2)连接CP,设AP=x.
∵AB∥CD,
∴∠EPA=∠CEP,即等腰△APE、等腰△PEC两个底角相等,
∴△APE∽△PEC,∴,
即:PE2=AECE,
而EC=2PB=2(5﹣x),
即:PC2=CEAP=2(5﹣x)x,
而PC2=PB2+BC2,即:PC2=(5﹣x)2+22,
∴2(5﹣x)x=(5﹣x)2+22,
解得:x(不合题意值已舍去),
即:AP;
(3)如图3中,在线段CF上取一点G,连接EG.
设∠F=α,则∠APE=∠AEP=∠BPF=90°﹣α,
则:∠EAP=180°﹣2∠APE=2α,
∵△ADE∽△FGE,设∠DAE=∠F=α,
由∠DAB=45°,可得3α=45°,2α=30°,
在Rt△ADH中,AH=DH=2,
在Rt△AHE中,∠HEA=∠EAB=2α=30°,∠HAE=60°,
∴HE=AHtan∠HAE=2,
∴DE=HE﹣HD=22,
EC=HC﹣HE=5﹣2,
∵△ADE∽△FGE,
∴∠ADC=∠EGF=135°,
则∠CEG=45°,
∴EGEC=52,
∴,
即:,
解得:FG=31.
【题目】(探究与创新):已知A、B在数轴上分别表示a、b
①对照数轴填写下表:
a | 6 | ﹣6 | ﹣6 | 2 | ﹣1.5 |
b | 4 | 0 | ﹣4 | ﹣10 | ﹣1.5 |
A、B两点的距离 | 2 |
|
|
| 0 |
②若A、B两点间的距离记为d,则d和a、b之间有何数量关系?(直接写出结果)
③在数轴上标出所有符合条件的整数点P使它到5和﹣5的距离之和为10,并求出所有这些整数的和.
④若点Q表示的数为x,当点Q在什么位置时,|x+1|+|x﹣2|有最小值?最小值是多少?