题目内容
【题目】如图,ABCD是正方形, G是BC上(除端点外)的任意一点,DE⊥AG于点E,BF∥DE,交AG于点F.给出以下结论:①△AED≌△BFA;②DE﹣BF=EF;③△BGF∽△DAE;④DE﹣BG=FG.其中正确的有( )
A. 1个 B. 2个 C. 3个 D. 4个
【答案】C
【解析】
由四边形ABCD是正方形,可得AB=AD,由DE⊥AG,BF∥DE,易证得BF⊥AG,又由同角的余角相等,可证得∠BAF=∠ADE,则可利用AAS判定△AED≌△BFA;由全等三角形的对应边相等,易证得DE-BF=EF;有两角对应相等的三角形相似,可证得△BGF∽△DAE;利用排除法即可求得答案.
解:∵四边形ABCD是正方形,
∴AB=AD,AD∥BC,
∵DE⊥AG,BF∥DE,
∴BF⊥AG,
∴∠AED=∠DEF=∠BFE=90°,
∵∠BAF+∠DAE=90°,∠DAE+∠ADE=90°,
∴∠BAF=∠ADE,
∴△AED≌△BFA(AAS);故A正确;
∴DE=AF,AE=BF,
∴DE-BF=AF-AE=EF,故B正确;
∵AD∥BC,
∴∠DAE=∠BGF,
∵DE⊥AG,BF⊥AG,
∴∠AED=∠GFB=90°,
∴△BGF∽△DAE,故C正确;
∵DE,BG,FG没有等量关系,
故不能判定DE-BG=FG正确.故D错误(也可以用排除法判断);
故选:C.
练习册系列答案
相关题目