题目内容
【题目】四个全等的直角三角形按图示方式围成正方形ABCD,过各较长直角边的中点作垂线,围成面积为S的小正方形EFGH.已知AM为Rt△ABM较长直角边,AM=2EF,则正方形ABCD的面积为( )
A. 14SB. 13SC. 12SD. 11S
【答案】B
【解析】
设AM=2a.BM=b.则正方形ABCD的面积=4a2+b2,由题意可知EF=(2a-b)-2(a-b)=2a-b-2a+2b=b,由此即可解决问题.
解:设AM=2a.BM=b.则正方形ABCD的面积=4a2+b2
由题意可知EF=(2a﹣b)﹣2(a﹣b)=2a﹣b﹣2a+2b=b,
∵AM=2EF,
∴2a=2b,
∴a=b,
∵正方形EFGH的面积为S,
∴b2=S,
∴正方形ABCD的面积=4a2+b2=13b2=13S,
故选:B.
练习册系列答案
相关题目