题目内容
【题目】学校与图书馆在同一条笔直道路上,甲从学校去图书馆,乙从图书馆回学校,甲、乙两人都匀速步行且同时出发,乙先到达目的地.两人之间的距离y(米)与时间t(分钟)之间的函数关系如图所示.
(1)根据图象信息,当t= 分钟时甲乙两人相遇,甲的速度为 米/分钟,乙的速度为 米/分钟;
(2)图中点A的坐标为 ;
(3)求线段AB所直线的函数表达式;
(4)在整个过程中,何时两人相距400米?
【答案】(1)24,40,60;(2)(40,1600);(3)线段AB所表示的函数表达式为y=40x;(4)在整个过程中,第20分钟和28分钟时两人相距400米
【解析】
(1)根据图象信息,当分钟时甲乙两人相遇,甲60分钟行驶2400米,根据速度路程时间可得甲的速度,进而求出乙的速度;
(2)求出乙从图书馆回学校的时间即点的横坐标;
(3)运用待定系数法求解即可;
(4)分相遇前后两种情况解答即可.
解:(1)根据图象信息,当t=24分钟时甲乙两人相遇,甲的速度为2400÷60=40(米/分钟).
∴甲、乙两人的速度和为2400÷24=100米/分钟,
∴乙的速度为100﹣40=60(米/分钟).
故答案为:24,40,60;
(2)乙从图书馆回学校的时间为2400÷60=40(分钟),
40×40=1600,
∴A点的坐标为(40,1600).
故答案为:(40,1600);
(3)设线段AB所表示的函数表达式为y=kx+b,
∵A(40,1600),B(60,2400),
∴,解得,
∴线段AB所表示的函数表达式为y=40x;
(4)两种情况:①迎面:(2400﹣400)÷100=20(分钟),
②走过:(2400+400)÷100=28(分钟),
∴在整个过程中,第20分钟和28分钟时两人相距400米.