题目内容
【题目】如图,△ABC是等边三角形,AD是BC边上的高,E是AC的中点,P是AD上的一个动点,当PC与PE的和最小时,∠CPE的度数是( )
A.30°B.45°C.60°D.90°
【答案】C
【解析】
连接BE,则BE的长度即为PE与PC和的最小值.再利用等边三角形的性质可得∠PBC=∠PCB=30°,即可解决问题;
解:如连接BE,与AD交于点P,此时PE+PC最小,
∵△ABC是等边三角形,AD⊥BC,
∴PC=PB,
∴PE+PC=PB+PE=BE,
即BE就是PE+PC的最小值,
∵△ABC是等边三角形,
∴∠BCE=60°,
∵BA=BC,AE=EC,
∴BE⊥AC,
∴∠BEC=90°,
∴∠EBC=30°,
∵PB=PC,
∴∠PCB=∠PBC=30°,
∴∠CPE=∠PBC+∠PCB=60°,
故选:C.
练习册系列答案
相关题目
【题目】学校组织学生到距离学校5的县科技馆去参观,学生小明因事没能乘上学校的班车,于是准备在校门口乘出租车去县科技馆,出租车收费标准如下:
里程 | 收费/元 |
3以下(含3) | 8.00 |
3以上(每增加1) | 2.00 |
(1)出租车行驶的里程为(,为整数),请用的代数式表示车费元;
(2)小明身上仅有14元钱,够不够支付乘出租车到科技馆的车费?请说明理由.