题目内容
【题目】如图1,已知△ABC中,∠BAC=90°,AB=AC,AE是过A的一条直线,且B、C在A、E的异侧,BD⊥AE于D,CE⊥AE于E.
(1)求证:BD=DE+CE;
(2)若直线AE绕A点旋转到图2位置时(BD<CE),其余条件不变,则BD与DE、CE的数量关系如何?请予以证明;
(3)若直线AE绕A点旋转到图3位置时(BD>CE),其余条件不变,问BD与DE、CE的关系如何?请直接写出结果,不需说明理由;
(4)根据以上的讨论,请用简洁的语言表述BD与DE、CE的数量关系.
【答案】
(1)
证明:∵∠BAC=90°,
∴∠BAD+∠EAC=90°,
又∵BD⊥AE,CE⊥AE,
∴∠BDA=∠AEC=90°,
∠BAD+∠ABD=90°,
∴∠ABD=∠EAC,
在△ABD与△CAE中,
,
∴△ABD≌△CAE,
∴BD=AE,AD=CE,
∵AE=AD+DE=CE+DE,
∴BD=DE+CE
(2)
证明:∵∠BAC=90°,
∴∠BAD+∠EAC=90°,
又∵BD⊥AE,CE⊥AE,
∴∠BDA=∠AEC=90°,
∠BAD+∠ABD=90°,
∴∠ABD=∠EAC,
在△ABD与△CAE中,
,
∴△ABD≌△CAE,
∴BD=AE,AD=CE,
∵DE=AD+AE=CE+BD,
∴DE=BD+CE
(3)
证明:∵∠BAC=90°,
∴∠BAD+∠EAC=90°,
又∵BD⊥AE,CE⊥AE,
∴∠BDA=∠AEC=90°,
∠BAD+∠ABD=90°,
∴∠ABD=∠EAC,
在△ABD与△CAE中,
,
∴△ABD≌△CAE,
∴BD=AE,AD=CE,
∵DE=AD+AE=BD+CE,
∴DE=BD+CE
(4)
证明:BD与CE的和等于DE或BD等于DE与CE的和
【解析】(1)证明△ABD≌△CAE,即可证得BD=AE,AD=CE,而AE=AD+DE=CE+DE,即可证得;(2)(3)图形变换了,但是(1)中的全等关系并没有改变,因而BD与DE、CE的关系并没有改变;(4)把BD与DE、CE的关系用语言表述出来即可.
【考点精析】解答此题的关键在于理解等腰直角三角形的相关知识,掌握等腰直角三角形是两条直角边相等的直角三角形;等腰直角三角形的两个底角相等且等于45°.