题目内容

【题目】(1)操作与探究:如图,矩形纸片ABCD中,AB=8,将纸片折叠,使顶点B落在边ADE点上,折痕的一端G点在边BC上,BG=10.

①第一次折叠:当折痕的另一端点FAB边上时,如图1,求折痕GF的长;

②第二次折叠:当折痕的另一端点FAD边上时,如图2,证明四边形BGEF为菱形,并求出折痕GF的长.

(2)拓展延伸:通过操作探究发现在矩形纸片ABCD中,AB=5,AD=13.如图3所示,折叠纸片,使点A落在BC边上的A′处,折痕为PQ.当点A′BC边上移动时,折痕的端点P,Q也随之移动.若限定点P,Q分别在AB,AD边上移动,则点A′BC边上可移动的最大距离是   

【答案】(1)GF=5②4;(2)4.

【解析】

(1)①首先利用翻折变换的性质以及勾股定理求出AE的长,进而利用勾股定理求出AFEF的长,根据勾股定理即可得出结论;
②首先证明四边形BGEF是平行四边形,再利用BG=EG,得出四边形BGEF是菱形,再利用菱形性质求出FG的长;
(2)分别利用当点P与点B重合时,以及当点D与点Q重合时,求出A′B的极值进而得出答案.

(1)①解:如图①过G作GH⊥AD,


在Rt△GHE中,GE=BG=10,GH=8,
所以,EH==6,AE=10-6=4,
设AF=x,则EF=BF=8-x,
则AF2+AE2=EF2
∴x2+42=(8-x)2
解得:x=3,
∴AF=3,BF=EF=5,
在Rt△BFG中,根据勾股定理得FG=.

②证明:如图②,过F作FK⊥BG于K,


∵ABCD是矩形,
∴AD∥BC,BH∥EG,
∴四边形BGEF是平行四边形;
由对称性知,BG=EG,
∴四边形BGEF是菱形.

BG=BF=10,AB=8,AF=6,

∴KG=4,FG=

(2)如图1,当点P与点B重合时,根据翻折对称性可得BA′=AB=5,
如图2,当点D与点Q重合时,根据翻折对称性可得


A′D=AD=13,
在Rt△A′CD中,A′D2=A′C2+CD2
即132=(13-A′B)2+52
解得:A′B=1,
所以点A'在BC上可移动的最大距离为5-1=4.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网