题目内容
【题目】已知:△ABC是边长为3的等边三角形,以BC为底边作一个顶角为120等腰△BDC.点M、点N分别是AB边与AC边上的点,并且满足∠MDN=60
(1)如图1,当点D在△ABC外部时,求证:BM+CN=MN;
(2)当点D在△ABC内部时,其它条件不变,请在图2中补全图形,并直接写出△AMN的周长.
【答案】(1)证明见解析;(2)3.
【解析】
(1)延长AB至F,使BF=CN,连接DF,证明△BDF≌△CDN,△DMN≌△DMF即可得到结论;
(2)延长BD交AC于P,延长CD交AB于Q,截取KP=QM,连接DK.通过证明△BDQ≌△CDP,△MDQ≌△KDP,△MDN≌△KDN可得△AMN的周长=AQ+AP=3.
(1)延长AB至F,使BF=CN,连接DF.
∵△BDC是等腰三角形,且∠BDC=120°,∴∠BCD=∠DBC=30°.
∵△ABC是边长为3的等边三角形,∴∠ABC=∠BAC=∠BCA=60°,∴∠DBA=∠DCA=90°,∴∠DBF=∠DBA=∠DCA=90°.
在△BDF和△CND中,∵BF=CN,∠DBF=∠DCN,DB=DC,∴△BDF≌△CDN,∴∠BDF=∠CDN,DF=DN.
∵∠MDN=60°,∴∠BDM+∠CDN=60°,∴∠BDM+∠BDF=60°,∠FDM=60°=∠MDN,DM为公共边,∴△DMN≌△DMF,∴MN=MF.
∵MF=BM+BF=MB+CN,∴MN=BM+CN.
(2)延长BD交AC于P,延长CD交AB于Q,截取KP=QM,连接DK.
∵△BDC是等腰三角形,且∠BDC=120°,∴BD=CD,∠DBC=∠DCB=30°,∠BDQ=∠CDP=60°.
又∵△ABC等边三角形,∴∠ABC=∠ACB=60°,∴∠MBD=∠PCD=30°,CQ⊥AB,BP⊥AC,∴AQ=BQAB,AP=PCAC.
在△BDQ和△CDP中,∵,∴△BDQ≌△CDP(ASA),∴BQ=PC,QD=PD.
∵CQ⊥AB,BP⊥AC,∴∠MQD=∠DPK=90°.
在△MDQ与△KDP中,
∵,
∴△MDQ≌△KDP(SAS),
∴∠QDM=∠PDK,DM=DK.
∵∠BDQ=60°,∠MDN=60°,∴∠QDM+∠PDN=60°,
∴∠PDK+∠PDN=60°,即∠KDN=60°.
在△MDN与△KDN中,∵,∴△MDN≌△KDN(SAS),
∴MN=KN=NP+PK,
∴△AMN的周长=AM+AN+MN=AM+AN+NP+PK=AM+AN+NP+QM=AQ+AP3.
故△AMN的周长为3.