题目内容
【题目】如图,在平面直角坐标系xOy中,对称轴为直线x=1的抛物线y=-x2+bx+c与x轴交于点A和点B,与y轴交于点C,且点B的坐标为(-1,0)
(1)求抛物线的解析式;
(2)点D的坐标为(0,1),点P是抛物线上的动点,若△PCD是以CD为底的等腰三角形,求点P的坐标.
【答案】(1)y=﹣x2+2x+3;(2)点P的坐标为(1+,2)或(1﹣,2).
【解析】
(1)求出A、B坐标,利用待定点C的坐标为(0,3),点D(1,0),
(2)由点C的坐标为(0,3),点D(1,0),可知满足条件的点P的纵坐标为2,解方程-x2+2x+3=2即可得到点P的横坐标,由此即可解决问题.
解:(1)∵抛物线的对称轴为直线x=1,y=﹣x2+bx+c与x轴交于点A和点B,
∴由题意可求点A的坐标为(3,0).
将点A(3,0)和点B(﹣1,0)代入y=﹣x2+bx+c,
得 ,
解得 ,
∴抛物线的解析式y=﹣x2+2x+3.
(2)如图,
∵点C的坐标为(0,3),点D(1,0),
∴满足条件的点P的纵坐标为2.
∴﹣x2+2x+3=2.
解得 x1=1+,x2=1﹣,
∴点P的坐标为(1+,2)或(1﹣,2).
【题目】探究函数的图象与性质.
小娜根据学习函数的经验,对函数的图象与性质进行了探究.下面是小娜的探究过程,请补充完整:
(1)下表是x与y的几组对应值.
x | … | 0 | 2 | 3 | … | ||||
y | … | 0 | m | n | 3 | … |
请直接写出:m= ,n= ;
(2)如图,小娜在平面直角坐标系xOy中,描出了上表中已经给出的各组对应值为坐标的点,请再描出剩下的两个点,并画出该函数的图象;
(3)结合画出的函数图象,解决问题:若方程有三个不同的解,记为x1, x2, x3,且x1< x2<x3. 请直接写出x1+ x2+x3的取值范围.
【题目】有这样一个问题:探究函数y=的图象与性质.小美根据学习函数的经验,对函数y=的图象与性质进行了探究下面是小美的探究过程,请补充完整:
(1)函数y=的自变量x的取值范围是 ;
(2)下表是y与x的几组对应值.
x | -2 | - | -1 | - | 1 | 2 | 3 | 4 | … | ||
y | 0 | - | -1 | - | m | … |
求m的值;
(3)如图,在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点.根据描出的点,画出该函数的图象;
(4)结合函数的图象,写出该函数的一条性质: .
【题目】某市居民的交通消费可分为交通工具、交通工具使用燃料、交通工具维修、市内公共交通、城市间交通五项.该市统计局根据当年各项的权重及各项价格的涨幅,计算当年居民交通消费价格的平均涨幅.2017年该市的有关数据如下表所示.
交通工具 | 交通工具使用燃料 | 交通工具维修 | 市内公共交通 | 城市间交通 | |
占交通消费的比例 | 22% | 13% | 5% | P | 26% |
相对上一年价格的涨幅 | 1.5% | m% | 2% | 0.5% | 1% |
(1)求p的值;
(2)若2017年该市的居民交通消费相对上一年价格的平均涨幅为1.25%,求m的值.