题目内容
【题目】现有边长相等的正三角形、正方形、正六进形、正八边形形状的地砖,如果选择其中的两钟铺满平整的地面,那么选择的两种地砖形状不能是( )
A. 正三角形与正方形 B. 正三角形与正六边形
C. 正方形与正六边形 D. 正方形与正八边形
【答案】C
【解析】
A、正三角形的每个内角是60°,正方形的每个内角是90°,∵3×60°+2×90°=360°,成立.
B、正六边形的每个内角是120°,正三角形的每个内角是60度.∵2×120°+2×60°=360°,或120°+4×60°=360度,成立.
C、正方形的每个内角是90°,正六边形的每个内角是120°,90m+120n=360°,m=4-n,显然n取任何正整数时,m不能得正整数,故不能铺满;
D、正方形的每个内角为90度,正八边形的每个内角为135度,因为90+135×2=360度,成立.
故选C.
练习册系列答案
相关题目
【题目】为了解某校九年级学生的身高情况,随机抽取了部分学生的身高进行调查,利用所得数据绘成如下统计图表:
频数分布表
身高分组/cm | 频数 | 百分比 |
5 | 10% | |
20% | ||
15 | 30% | |
14 |
| |
6 | 12% | |
总计 | 100% |
(1)填空:______;
(2)通过计算补全频数分布直方图;
(3)该校九年级一共有600名学生,估计身高不低于165cm的学生大约有多少人?