题目内容

【题目】如图,在平面直角坐标系中,Rt△ABC的三个顶点坐标为 A(﹣3,0),B(﹣3,﹣3),C(﹣1,﹣3)

(1)求Rt△ABC的面积;
(2)在图中作出△ABC关于x轴对称的图形△DEF,并写出D,E,F的坐标.

【答案】
(1)解:S△ABC= AB×BC= ×3×2=3
(2)解:所画图形如下所示,其中△DEF即为所求,

D,E,F的坐标分别为:D(﹣3,0),E(﹣3,3),F(﹣1,3).


【解析】(1)直接根据三角形的面积公式求解即可;(2)先找出△ABC各顶点关于x轴对称的对应点,然后顺次连接各点即可.
【考点精析】解答此题的关键在于理解三角形的面积的相关知识,掌握三角形的面积=1/2×底×高,以及对坐标与图形变化-对称的理解,了解关于x轴对称的点的特征:两个点关于x轴对称时,它们的坐标中,x相等,y的符号相反,即点P(x,y)关于x轴的对称点为P’(x,-y);关于y轴对称的点的特征:两个点关于y轴对称时,它们的坐标中,y相等,x的符号相反,即点P(x,y)关于y轴的对称点为P’(-x,y).

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网