题目内容
【题目】(1)(方法回顾)证明:三角形中位线定理.
已知:如图1,中,D、E分别是AB、AC的中点.
求证:,.
证明:如图1,延长DE到点F,使得,连接CF;
请继续完成证明过程;
(2)(问题解决)
如图2,在矩形ABCD中,E为AD的中点,G、F分别为AB、CD边上的点,若,,,求GF的长.
(3)(思维拓展)
如图3,在梯形ABCD中,,,,E为AD的中点,G、F分别为AB、CD边上的点,若,,,求GF的长.
【答案】(1)详见解析;(2);(3).
【解析】
(1)用“倍长法”将DE延长一倍:延长DE到F,使得EF=DE,利用“边角边”证明△ADE和△CEF全等,根据全等三角形对应边相等可得AD=CF,然后判断出四边形BCFD是平行四边形,根据平行四边形的性质可得;
(2)先判断出△AEG≌△DEH(ASA),进而判断出EF垂直平分GH,即可得出结论;
(3)如图3,作辅助线构建全等三角形,先求出AG=HD=2,进而判断出△PDH为30度的直角三角形,再用勾股定理求出HF即可得出结论.
(1)证明:(1)如图1,延长DE到点F,使得EF=DE,连接CF,
在△ADE和△CFE中,
,
∴△ADE≌△CFE(SAS),
∴∠A=∠ECF,AD=CF,
∴CF∥AB,
又∵AD=BD,
∴CF=BD,
∴四边形BCFD是平行四边形,
∴DE∥BC,DE=BC.
(2)如图2,延长GE、FD交于点H,
∵E为AD中点,
∴EA=ED,且∠A=∠EDH=90°,
在△AEG和△DEH中,
,
∴△AEG≌△DEH(ASA),
∴AG=HD=3,EG=EH,
∵∠GEF=90°,
∴EF垂直平分GH,
∴GF=HF=DH+DF=3+7=10;
(3)解:如图3,过点D作AB的平行线交GE的延长线于点H,过H作CD的垂线,垂足为P,连接HF,
同(1)可知△AEG≌△DEH,GF=HF,
∴∠A=∠HDE=90°,AG=HD=2
∵∠ADC=120°,
∴∠HDF=360°90°120°=150°,
∴∠HDP=30°,
∴PH=DH=,PD=3,
∴PF=PD+DF=3+4=7
在Rt△HFP中,∠HPF=90°,HP=,PF=7,
∴HF==
∴GF=.
【题目】为拓宽学生视野,引导学生主动适应社会,促进书本知识和生活经验的深度融合,我市某中学决定组织部分班级去赤壁开展研学旅行活动,在参加此次活动的师生中,若每位老师带17个学生,还剩12个学生没人带;若每位老师带18个学生,就有一位老师少带4个学生.现有甲、乙两种大客车,它们的载客量和租金如表所示.
甲种客车 | 乙种客车 | |
载客量/(人/辆) | 30 | 42 |
租金/(元/辆) | 300 | 400 |
学校计划此次研学旅行活动的租车总费用不超过3100元,为了安全,每辆客车上至少要有2名老师.
(1)参加此次研学旅行活动的老师和学生各有多少人?
(2)既要保证所有师生都有车坐,又要保证每辆客车上至少要有2名老师,可知租用客车总数为 辆;
(3)你能得出哪几种不同的租车方案?其中哪种租车方案最省钱?请说明理由.