题目内容
【题目】两个工程队共同参与一项筑路工程,若先由甲、乙队合作天,剩下的工程再由乙队单独做天可以完成,共需施工费810万元;若由甲、乙合作完成此项工程共需天,共需施工费万元.
(1)求乙队单独完成这项工程需多少天?
(2)甲、乙两队每天的施工费各为多少万元?
(3)若工程预算的总费用不超过万元,则乙队最少施工多少天?
【答案】(1)90天;(2)甲队每天施工费为15万元,乙队每天施工费为8万元;(3)乙队最少施工30天
【解析】
(1)乙队单独完成这项工程需x天,设根据“先由甲、乙队合作天,剩下的工程再由乙队单独做天可以完成”列出方程,解之即可;
(2)设甲队每天施工费为m万元,乙队每天施工费为n万元,根据两种情况下的总施工费分别为810万元和828万元列出方程组,解之即可;
(3)求出甲队单独施工需要的天数,设乙队施工a天,甲队施工b天,则有,再根据工程预算的总费用不超过万元列出不等式,代入求解即可得到a的最小值,即最少施工的天数.
解:(1)设乙队单独完成这项工程需x天,
由题意可得: ,
解得:x=90,
经检验:x=90是原方程的解,
∴乙队单独完成这项工程需90天;
(2)设甲队每天施工费为m万元,乙队每天施工费为n万元,由题意得:
,
解得:,
∴甲队每天施工费为15万元,乙队每天施工费为8万元;
(3)∵乙队单独完成工程需90天,甲、乙合作完成此工程共需36天,
∴甲队单独完成这项工程的天数为:,
设乙队施工a天,甲队施工b天,由题意得:
,
由①得:,
把代入②可解得:a≥50,
∴乙队最少施工30天.
【题目】某工厂甲、乙两个部门各有员工400人,为了解这两个部门员工的生产技能情况,进行了抽样调查,过程如下,请补充完整.
收集数据
从甲、乙两个部门各随机抽取20名员工,进行了生产技能测试,测试成绩(百分制)如下:
甲 78 86 74 81 75 76 87 70 75 90
75 79 81 70 74 80 86 69 83 77
乙 93 73 88 81 72 81 94 83 77 83
80 81 70 81 73 78 82 80 70 40
整理、描述数据
按如下分数段整理、描述这两组样本数据:
成绩 人数 部门 | 40≤x≤49 | 50≤x≤59 | 60≤x≤69 | 70≤x≤79 | 80≤x≤89 | 90≤x≤100 |
甲 | 0 | 0 | 1 | 11 | 7 | 1 |
乙 |
(说明:成绩80分及以上为生产技能优秀,70--79分为生产技能良好,60--69分为生产技能合格,60分以下为生产技能不合格)
分析数据
两组样本数据的平均数、中位数、众数如下表所示:
部门 | 平均数 | 中位数 | 众数 |
甲 | 78.3 | 77.5 | 75 |
乙 | 78 | 80.5 | 81 |
得出结论:
.估计乙部门生产技能优秀的员工人数为____________;
.可以推断出_____________部门员工的生产技能水平较高,理由为_____________.(至少从两个不同的角度说明推断的合理性)
【题目】小明同学在用描点法画二次函数y=x2+bx+c图像时,由于粗心他算错了一个y值,列出了下面表格:
x | … | -1 | 0 | 1 | 2 | 3 | … |
y=x2+bx+c | … | 5 | 3 | 2 | 3 | 6 | … |
(1)请你帮他指出这个错误的y值,并说明理由;
(2)若点M(m,y1),N(m+4,y2)在二次函数y=x2+bx+c图像上,且m>-1,试比较y1与y2的大小.