题目内容
【题目】如图,△ABC和△ADE都是等腰直角三角形,AB=AC,AD=AE,∠BAC=∠DAE=90°.
(1)求证:△ACE≌△ABD;
(2)若AC=2,EC=4,DC=2,求∠ACD的度数;
(3)在(2)的条件下,直接写出DE的长为 .(只填结果,不用写计算过程)
【答案】(1)证明见解析;(2)∠ACD=135°;(3)2.
【解析】
(1)根据等腰直角三角形的性质可以得出∠EAC=∠DAB,再有AB=AC,AD=AE,根据SAS就可以得出结论;
(2)根据勾股定理可以求出BC的值为2,就可以得出BC=DC,在△BCD中由勾股定理的逆定理可以得出△BCD为等腰直角三角形,就可以得出∠BCD=90°,从而得出∠ACD的度数;
(3)由(2)可以知道∠CDB=45°,而∠ABC=45°,就可以得出△ABD是直角三角形,由勾股定理就可以求出AB的值,再由勾股定理就可以求出DE的值.
解:(1)∵∠BAC=∠DAE=90°,
∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,
即∠EAC=∠BAD.
在△ACE和△ABD中,
,
∴△ACE≌△ABD(SAS);
(2)∵△ACE≌△ABD(SAS),
∴DB=EC=4,
在Rt△ABC中,AB2+AC2=BC2,
∴BC2=22+22=8,
在△DBC中,BC2+DC2=8+8=16=42=BD2,
∴∠DCB=90°,
∴∠ACD=90°+45°=135°;
(3)∵BC2=8,DC2=8,
∴BC=DC.
∵∠DCB=90°,
∴∠DBC=45°.
∵∠ABC=45°,
∴∠ABD=90°.
在Rt△ABD中由勾股定理,得:
.
在Rt△AED中由勾股定理,得:
.
故答案为:.
练习册系列答案
相关题目