题目内容
【题目】已知四边形ABCD的一组对边AD、BC的延长线交于点E.
(1)如图1,若∠ABC=∠ADC=90°,求证:EDEA=ECEB;
(2)如图2,若∠ABC=120°,cos∠ADC= ,CD=5,AB=12,△CDE的面积为6,求四边形ABCD的面积;
(3)如图3,另一组对边AB、DC的延长线相交于点F.若cos∠ABC=cos∠ADC= ,CD=5,CF=ED=n,直接写出AD的长(用含n的式子表示)
【答案】
(1)解:如图1中,
∵∠ADC=90°,∠EDC+∠ADC=180°,
∴∠EDC=90°,
∵∠ABC=90°,
∴∠EDC=∠ABC,
∵∠E=∠E,
∴△EDC∽△EBA,
∴ = ,
∴EDEA=ECEB.
(2)解:如图2中,过C作CF⊥AD于F,AG⊥EB于G.
在Rt△CDF中,cos∠ADC= ,
∴ = ,∵CD=5,
∴DF=3,
∴CF= =4,
∵S△CDE=6,
∴ EDCF=6,
∴ED= =3,EF=ED+DF=6,
∵∠ABC=120°,∠G=90°,∠G+∠BAG=∠ABC,
∴∠BAG=30°,
∴在Rt△ABG中,BG= AB=6,AG= =6 ,
∵CF⊥AD,AG⊥EB,
∴∠EFC=∠G=90°,∵∠E=∠E,
∴△EFC∽△EGA,
∴ = ,
∴ = ,
∴EG=9 ,
∴BE=EG﹣BG=9 ﹣6,
∴S四边形ABCD=S△ABE﹣S△CDE= (9 ﹣6)×6 ﹣6=75﹣18 .
(3)解:如图3中,作CH⊥AD于H,则CH=4,DH=3,
∴tan∠E= ,
作AG⊥DF于点G,设AD=5a,则DG=3a,AG=4a,
∴FG=DF﹣DG=5+n﹣3a,
∵CH⊥AD,AG⊥DF,∠E=∠F,
易证△AFG∽△CEH,
∴ = ,
∴ = ,
∴a= ,
∴AD=5a= .
【解析】要证乘积式等式成立,可化为比例式即成立,进一步确定三角形△EDC与△EBA相似;(2)特殊角、三角函数应放在直角三角形中运用,因此需作垂线构造直角三角形,恰好构造出第(1)题的图形,借鉴第一问的思路,求出EG,进一步利用面积之差,求出四边形ABCD的面积.(3)作垂线构造出直角三角形,利用相似三角形△AFG∽△CEH,构建比例式,求出AD的长.
【考点精析】认真审题,首先需要了解相似三角形的判定与性质(相似三角形的一切对应线段(对应高、对应中线、对应角平分线、外接圆半径、内切圆半径等)的比等于相似比;相似三角形周长的比等于相似比;相似三角形面积的比等于相似比的平方),还要掌握锐角三角函数的定义(锐角A的正弦、余弦、正切、余切都叫做∠A的锐角三角函数)的相关知识才是答题的关键.
【题目】受寒潮影响,淘宝网上的电热取暖器销售火旺,某电商销售每台成本价分别为200元、170元的A、B两种型号的电热取暖器,下表是近两天的销售情况:
销售时段 | 销售数量 | 销售收入 | |
A种型号 | B种型号 | ||
第一天 | 3台 | 5台 | 1800元 |
第二天 | 4台 | 10台 | 3100元 |
(进价、售价均保持不变,利润=销售收入﹣进货成本)
(1)求A,B两种型号的电热取暖器的销售单价;
(2)若电商准备用不多于5400元的金额再采购这两种型号的电热取暖器共30台,求A种型号的电热取暖器最多能采购多少台?