题目内容
【题目】如图,动点M、N同时从原点出发沿数轴做匀速运动,己知动点M、N的运动速度比是1:2(速度单位:1个单位长度/秒),设运动时间为t秒.
(1)若动点M向数轴负方向运动,动点N向数轴正方向运动,当t=2秒时,动点M运动到A点,动点N运动到B点,且AB=12(单位长度).
①在数轴上画出A、B两点的位置,并回答:点M运动的速度是 (单位长度/秒);点N运动的速度是 (单位长度/秒).
②若点P为数轴上一点,且PA﹣PB=OP,求的值;
(2)由(1)中A、B两点的位置开始,若M、N同时再次开始按原速运动,且在数轴上的运动方向不限,再经过几秒,MN=4(单位长度)?
【答案】(1)①图详见解析,2,4;②或;(2)4秒或8秒或秒或秒.
【解析】
(1)①根据题意把A、B两点表示在数轴上,计算出M、N两点的速度即可;
②设点P在数轴上对应的数为x,根据PAPB=OP,结合x的范围分情况求解即可;
(2)分情况讨论:若M、N运动的方向相同,要使得MN=4,必为N追击M;若M、N运动方向相反,要使得MN=4,必为M、N相向而行;然后根据MN=4分别列出方程求解即可..
解:(1)①∵点M、N的运动速度比是1:2,AB=12,
∴画出数轴,如图所示:
∴点M运动的速度是2(单位长度/秒);点N运动的速度是4(单位长度/秒);
②设点P在数轴上对应的数为x,
∵PA﹣PB=OP≥0,
∴x≥2,
当2≤x≤8时,PA﹣PB=(x+4)﹣(8﹣x)=x+4﹣8+x,即2x﹣4=x,解得x=4;
当x>8时,PA﹣PB=(x+4)﹣(x﹣8)=12,即x=12,
∴或;
(2)设再经过m秒MN=4(单位长度),
若M、N运动的方向相同,要使得MN=4,必为N追击M,
∴|(8﹣4m)﹣(﹣4﹣2m)|=4,即|12﹣2m|=4,
解得:m=4或m=8;
若M、N运动方向相反,要使得MN=4,必为M、N相向而行,
∴|(8﹣4m)﹣(﹣4+2m)|=4,即|12﹣6m|=4,
解得:m=或m=,
综上,再经过4秒或8秒或秒或秒,MN=4.
【题目】某超市计划购进甲、乙两种商品共1200件,这两种商品的进价,售价如下表:
进价(元/件) | 售价(元/件) | |
甲 | 25 | 30 |
乙 | 45 | 60 |
(1)超市如何进货,进货款恰好为46000元;
(2)为确保乙商品畅销,在(1)的条件下,商家决定对乙商品进行打折出售,且全部售完后,乙商品的利润率为20%,请问乙商品需打几折?