题目内容
【题目】如图,在平面直角坐标系中,点的坐标为,以点为圆心,8为半径的圆与轴交于,两点,过作直线与轴负方向相交成的角,且交轴于点,以点为圆心的圆与轴相切于点.
(1)求直线的解析式;
(2)将以每秒1个单位的速度沿轴向左平移,当第一次与外切时,求平移的时间.
【答案】(1)直线的解析式为:.(2)平移的时间为5秒.
【解析】
(1)求直线的解析式,可以先求出A、C两点的坐标,就可以根据待定系数法求出函数的解析式.
(2)设⊙O2平移t秒后到⊙O3处与⊙O1第一次外切于点P,⊙O3与x轴相切于D1点,连接O1O3,O3D1.
在直角△O1O3D1中,根据勾股定理,就可以求出O1D1,进而求出D1D的长,得到平移的时间.
(1)由题意得,
∴点坐标为.
∵在中,,
,
∴点的坐标为.
设直线的解析式为,
由过、两点,
得,
解得,
∴直线的解析式为:.
(2)如图,
设平移秒后到处与第一次外切于点,
与轴相切于点,连接,.
则,
∵轴,∴,
在中,.
∵,
∴,
∴(秒),
∴平移的时间为5秒.
练习册系列答案
相关题目