题目内容
【题目】如图,在等边中,点
在边
上,
过点
且分别与边
、
相交于点
、
、
是
上的点,判断下列说法错误的是( )
A. 若,则
是
的切线 B. 若
是
的切线,则
C. 若,则
是
的切线 D. 若
,则
是
的切线
【答案】C
【解析】
如图1,连接OE,根据同圆的半径相等得到OB=OE,根据等边三角形的性质得到∠BOE=∠BAC,求得OE∥AC,于是得到A选项正确;B、由于EF是⊙O的切线,得到OE⊥EF,根据平行线的性质得到B选项正确;C、根据等边三角形的性质和圆的性质得到AO=OB,如图2,过O作OH⊥AC于H,根据三角函数得到OH=AO≠OB,于是得到C选项错误;D、如图2,根据等边三角形的性质和等量代换即可得到D选项正确.
A、如图1,连接OE,
则OB=OE,
∵∠B=60°
∴∠BOE=60°,
∵∠BAC=60°,
∴∠BOE=∠BAC,
∴OE∥AC,
∵EF⊥AC,
∴OE⊥EF,
∴EF是⊙O的切线,
∴A选项正确;
B、∵EF是⊙O的切线,
∴OE⊥EF,
由A知:OE∥AC,
∴AC⊥EF,
∴B选项正确;
C、∵∠B=60°,OB=OE,
∴BE=OB,
∵BE=CE,
∴BC=AB=2BO,
∴AO=OB,
如图2,过O作OH⊥AC于H,
∵∠BAC=60°,
∴OH=AO≠OB,
∴C选项错误;
D、如图2,∵BE=EC,
∴CE=BE,
∵AB=BC,BO=BE,
∴AO=CE=OB,
∴OH=AO=OB,
∴AC是⊙O的切线,
∴D选项正确.
故选C.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目