题目内容

【题目】某商场计划购进AB两种型号的手机,已知每部A型号手机的进价比每部B型号手机进价多500元,每部A型号手机的售价是2500元,每部B型号手机的售价是2100元.

(1)若商场用50000元共购进A型号手机10部,B型号手机20部,求AB两种型号的手机每部进价各是多少元?

(2)为了满足市场需求,商场决定用不超过7.5万元采购AB两种型号的手机共40部,且A型号手机的数量不少于B型号手机数量的2倍.

①该商场有哪几种进货方式?

②该商场选择哪种进货方式,获得的利润最大?

【答案】(1)AB两种型号的手机每部进价各是2000元、1500元;

(2)①有4种购机方案:方案一A种型号的手机购进27部,则B种型号的手机购进13部;方案二:A种型号的手机购进28部,则B种型号的手机购进12部;方案三:A种型号的手机购进29部,则B种型号的手机购进11部;方案四:A种型号的手机购进30部,则B种型号的手机购进10部;②购进A种型号的手机27部,购进B种型号的手机13部时获利最大.

【解析】(1)设A、B两种型号的手机每部进价各是x元、y元,根据每部A型号手机的进价比每部B型号手机进价多500元以及商场用50000元共购进A型号手机10部,B型号手机20部列出方程组,求出方程组的解即可得到结果;

(2)①设A种型号的手机购进a部,则B种型号的手机购进(40-a)部,根据花费的钱数不超过7.5万元以及A型号手机的数量不少于B型号手机数量的2倍列出不等式组,求出不等式组的解集的正整数解,即可确定出购机方案;

②设A种型号的手机购进a部时,获得的利润为w元.列出w关于a的函数解析式,根据一次函数的性质即可求解.

1)设A、B两种型号的手机每部进价各是x元、y元,

根据题意得:

解得:

答:A、B两种型号的手机每部进价各是2000元、1500元;

(2)①设A种型号的手机购进a部,则B种型号的手机购进(40-a)部,

根据题意得:

解得:≤a≤30,

a为解集内的正整数,

a=27,28,29,30,

∴有4种购机方案:

方案一:A种型号的手机购进27部,则B种型号的手机购进13部;

方案二:A种型号的手机购进28部,则B种型号的手机购进12部;

方案三:A种型号的手机购进29部,则B种型号的手机购进11部;

方案四:A种型号的手机购进30部,则B种型号的手机购进10部;

②设A种型号的手机购进a部时,获得的利润为w元.

根据题意,得w=500a+600(40-a)=-100a+24000,

-10<0,

wa的增大而减小,

∴当a=27时,能获得最大利润.此时w=-100×27+24000=21700(元).

因此,购进A种型号的手机27部,购进B种型号的手机13部时,获利最大.

答:购进A种型号的手机27部,购进B种型号的手机13部时获利最大.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网