题目内容
【题目】在四张编号为A,B,C,D的卡片(除编号外,其余完全相同)的正面分别写上如图所示的正整数后,背面向上,洗匀放好.
(1)我们知道,满足a2+b2=c2的三个正整数a,b,c成为勾股数,嘉嘉从中随机抽取一张,求抽到的卡片上的数是勾股数的概率P1;
(2)琪琪从中随机抽取一张(不放回),再从剩下的卡片中随机抽取一张(卡片用A,B,C,D表示).请用列表或画树形图的方法求抽到的两张卡片上的数都是勾股数的概率P2 , 并指出她与嘉嘉抽到勾股数的可能性一样吗?
【答案】
(1)解:嘉嘉随机抽取一张卡片共出现4种等可能结果,其中抽到的卡片上的数是勾股数的结果有3种,
所以嘉嘉抽取一张卡片上的数是勾股数的概率P1= ;
(2)解:列表法:
A | B | C | D | |
A | (A,B) | (A,C) | (A,D) | |
B | (B,A) | (B,C) | (B,D) | |
C | (C,A) | (C,B) | (C,D) | |
D | (D,A) | (D,B) | (D,C) |
由列表可知,两次抽取卡片的所有可能出现的结果有12种,
其中抽到的两张卡片上的数都是勾股数的有6种,
∴P2= = ,
∵P1= ,P2= ,P1≠P2
∴淇淇与嘉嘉抽到勾股数的可能性不一样.
【解析】(1)先利用勾股定理的逆定理判断哪些为勾股数,然后依据概率公式进行计算即可;
(2)首先利用列表法,表示出所有可能的结果,然后根据勾股数可判定只有A卡片上的三个数不是勾股数,接下来,从12种等可能的结果数中找出抽到的两张卡片上的数都是勾股数的结果数,然后根据概率公式求解即可.
【考点精析】掌握列表法与树状图法是解答本题的根本,需要知道当一次试验要设计三个或更多的因素时,用列表法就不方便了,为了不重不漏地列出所有可能的结果,通常采用树状图法求概率.
【题目】“2018年西安女子半程马拉松”的赛事有两项:A“女子半程马拉松”;B、“5公里女子健康跑”.小明对部分参赛选手作了如下调查:
调查总人数 | 50 | 100 | 200 | 300 | 400 | 500 |
参加“5公里女子健康跑”人数 | 18 | 45 | 79 | 120 | 160 | b |
参加“5公里女子健康跑”频率 | 0.360 | a | 0.395 | 0.400 | 0.400 | 0.400 |
(1)计算表中a,b的值;
(2)在图中,画出参赛选手参加“5公里女子健康跑“的频率的折线统计图;
(3)从参赛选手中任选一人,估计该参赛选手参加“5公里女子健康跑”的概率(精确到0.1).