题目内容
【题目】如图,在边长为4的正方形ABCD中,P是BC边上一动点(不含B、C两点),将 ABP沿直线AP翻折,点B落在点E处;在CD上有一点M,使得将 CMP沿直线MP翻折后,点C落在直线PE上的点F处,直线PE交CD于点N,连接MA,NA.则以下结论中正确的个数有( ).
① CMP∽ BPA;
②四边形AMCB的面积最大值为10;
③当P为BC中点时,AE为线段NP的中垂线;
④线段AM的最小值为2 ;
⑤当 ABP≌ AND时,BP=4 -4.
A.①②③
B.②③⑤
C.①④⑤
D.①②⑤
【答案】D
【解析】解:∵∠APB=∠APE,∠MPC=∠MPN,
∵∠CPN+∠NPB=180°,
∴2∠NPM+2∠APE=180°,
∴∠MPN+∠APE=90°,
∴∠APM=90°,
∵∠CPM+∠APB=90°,∠APB+∠PAB=90°,
∴∠CPM=∠PAB,
∵四边形ABCD是正方形,
∴AB=CB=DC=AD=4,∠C=∠B=90°,
∴△CMP∽△BPA.故①正确,
设PB=x,则CP=4-x,
∵△CMP∽△BPA,
∴= ,
∴CM=x(4-x),
∴S四边形AMCB=[4+x(4-x)]×4=-x2+2x+8=-(x-2)2+10,
∴x=2时,四边形AMCB面积最大值为10,故②正确,
易证得△ADN≌△AEN,当PB=PC=PE=2时,设ND=NE=y,
在RT△PCN中,(y+2)2=(4-y)2+22解得y= ,
∴NE≠EP,故③错误,
作MG⊥AB于G,
∵AM== ,
∴AG最小时AM最小,
∵AG=AB-BG=AB-CM=4-x(4-x)=(x-2)2+3,
∴x=2时,AG最小值=3,
∴AM的最小值==5,故④错误.
∵△ABP≌△ADN时,
∴∠PAB=∠DAN=22.5°,在AB上取一点K使得AK=PK,设PB=z,
∴∠KPA=∠KAP=22.5°
∵∠PKB=∠KPA+∠KAP=45°,
∴∠BPK=∠BKP=45°,
∴PB=BK=z,AK=PK=z,
∴z+z=4,
∴z=4-4,
∴PB=4-4,故⑤正确.
故正确的为①②⑤.
故选D.
【考点精析】关于本题考查的相似三角形的判定与性质,需要了解相似三角形的一切对应线段(对应高、对应中线、对应角平分线、外接圆半径、内切圆半径等)的比等于相似比;相似三角形周长的比等于相似比;相似三角形面积的比等于相似比的平方才能得出正确答案.