题目内容
【题目】多项式24m2n2+18n各项的公因式是 .
【答案】6n【解析】解:多项式24m2n2+18n各项的公因式是6n. 所以答案是:6n.
【题目】某电厂有5000吨电煤.
(1)求:这些电煤能够使用的天数x(单位:天)与该厂平均每天用煤吨数y(单位:吨)之间的函数关系;
(2)若平均每天用煤200吨,则这批电煤能用多少天?
(3)若该电厂前10天每天用200吨,后因各地用电紧张,每天用电煤300吨,则这批电煤共可用多少天?
【题目】如图,△ABC中,AD是高,E、F分别是AB、AC的中点. (1)若AB=10,AC=8,求四边形AEDF的周长;(2)求证:EF垂直平分AD.
【题目】把195张图片平均分给若干名学生,已知每人分得的图片数比人数少2.学生有多少人?
【题目】如图,在等腰直角△ABC中,∠ACB=90°,CO⊥AB于点O,点D、E分别在边AC、BC上,且AD=CE,连结DE交CO于点P,给出以下结论:
①△DOE是等腰直角三角形;②∠CDE=∠COE;③若AC=1,则四边形CEOD的面积为;④,其中所有正确结论的序号是 .
【题目】计算:(1)5 ﹣7 ﹣4 (2) × ÷ (3)( + )× (4)(1﹣ )(1+ )+( ﹣1)2 .
【题目】如图1,点O为直线AB上一点,过点O作射线OC,使∠BOC=120°.将一直角三角板的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.将图1中的三角板绕点O逆时针旋转至图2,使一边OM在∠BOC的内部,另一边ON仍在直线AB的下方.(1)若OM恰好平分∠BOC,求∠BON的度数;(2)若∠BOM等于∠COM余角的3倍,求∠BOM的度数;(3)若设∠BON=α(0°<α<90°),试用含α的代数式表示∠COM.
【题目】小刚在A,B两家体育用品商店都发现了他看中的羽毛球拍和篮球,两家商店的羽毛球拍和篮球的单价都是相同的,羽毛球拍和篮球单价之和是426元,且篮球的单价是羽毛球拍的单价的4倍少9元.(1)求小刚看中的羽毛球拍和篮球的单价各是多少元?(2)小刚在元旦这一天上街,恰好赶上商店促销,A商店所有商品打八五折销售,B商店全场购物满100元返购物券20元(不足100元不返券,购物券全场通用,用购物券购物不再返券),但他只带了380元钱,如果他只在一家商店购买看中的这两样商品,你能说明他可以选择在哪一家购买吗?若两家都可以选择,在哪一家购买更省钱?
【题目】已知a2+b2+2a-4b+5=0,求2a2+4b-3的值.