题目内容

【题目】如图1,点O为直线AB上一点,过点O作射线OC,使∠BOC=120°.将一直角三角板的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.将图1中的三角板绕点O逆时针旋转至图2,使一边OM在∠BOC的内部,另一边ON仍在直线AB的下方.

(1)若OM恰好平分∠BOC,求∠BON的度数;
(2)若∠BOM等于∠COM余角的3倍,求∠BOM的度数;
(3)若设∠BON=α(0°<α<90°),试用含α的代数式表示∠COM.

【答案】
(1)解: ∵∠BOC=120° ,OM恰好平分 ∠BOC
∴∠BOM=∠BOC=60°
又 ∵∠MON=90°
∴∠BON=∠MON∠BOM
=90°60°=30°

(2)解:设 的余角为x°,

由题意得:
x=15,
3x=45,
所以 的度数为45°
(3)解: (0°< <90°).


【解析】(1)利用角平分线的定义求出∠BOM的度数,再根据∠BON=∠MON∠BOM,即可求出结果。
(2)设∠ C O M 的余角为x°,表示出∠COM的度数,再根据∠BOM=∠COM余角的3倍,建立方程求解即可。
(3)根据角的和与差计算即可。
【考点精析】通过灵活运用角的平分线和图形的旋转,掌握从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线;每一个点都绕旋转中心沿相同方向转动了相同的角度,任意一对对应点与旋转中心的连线所成的角都是旋转角,对应点到旋转中心的距离相等.旋转的方向、角度、旋转中心是它的三要素即可以解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网