题目内容
【题目】问题情境:在综合实践课上,老师让同学们以“菱形纸片的剪拼”为主题开展数学活动,如图(1),将一张菱形纸片ABCD(∠BAD=60°)沿对角线AC剪开,得到△ABC和△ACD
操作发现:(1)将图(1)中的△ABC以A为旋转中心,顺时针方向旋转角α(0°<α<60°)得到如图(2)所示△ABC′,分别延长BC′和DC交于点E,发现CE=C′E.请你证明这个结论.
(2)在问题(1)的基础上,当旋转角α等于多少度时,四边形ACEC′是菱形?请你利用图(3)说明理由.
拓展探究:(3)在满足问题(2)的基础上,过点C′作C′F⊥AC,与DC交于点F.试判断AD、DF与AC的数量关系,并说明理由.
【答案】(1)见解析;(2)当α=30°时,四边形AC′EC是菱形,理由见解析;(3)AD+DF=AC,理由见解析
【解析】
(1)先判断出∠ACC′=∠AC′C,进而判断出∠ECC′=∠EC′C,即可得出结论;
(2)判断出四边形AC′EC是平行四边形,即可得出结论;
(3)先判断出HAC′是等边三角形,得出AH=AC′,∠H=60°,再判断出△HDF是等边三角形,即可得出结论.
(1)证明:如图2,连接CC′,
∵四边形ABCD是菱形,
∴∠ACD=∠AC′B=30°,AC=AC′,
∴∠ACC′=∠AC′C,
∴∠ECC′=∠EC′C,
∴CE=C′E;
(2)当α=30°时,四边形AC′EC是菱形,
理由:∵∠DCA=∠CAC′=∠AC′B=30°,
∴CE∥AC′,AC∥C′E,
∴四边形AC′EC是平行四边形,
又∵CE=C′E,
∴四边形AC′EC是菱形;
(3)AD+DF=AC.
理由:如图4,分别延长CF与AD交于点H,
∵∠DAC=∠C′AC=30°,C′F⊥AC,
∴∠AC′H=∠DAC′=60°,
∴△HAC′是等边三角形,
∴AH=AC′,∠H=60°,
又∵AD=DC,
∴∠DAC=∠DCA=30°,
∴∠HDC=∠DAC+∠DCA=60°,
∴△HDF是等边三角形,
∴DH=DF,
∴AD+DF=AD+DH=AH.
∵AC′=AC,
∴AC=AD+DF.
【题目】某商场用14500元购进甲、乙两种矿泉水共500箱,矿泉水的成本价与销售价如表(二)所示:
类别 | 成本价(元/箱) | 销售价(元/箱) |
甲 | 25 | 35 |
乙 | 35 | 48 |
求:(1)购进甲、乙两种矿泉水各多少箱?
(2)该商场售完这500箱矿泉水,可获利多少元?