题目内容
【题目】如图,在ΔABC中,∠BAC=120°,点D是BC上一点,BD的垂直平分线交AB于点E,将ΔACD沿AD折叠,点C恰好与点E重合,则∠B等于( )
A.15°B.20°C.25°D.30°
【答案】B
【解析】
由题意根据折叠的性质得出∠C=∠AED,再利用线段垂直平分线的性质得出BE=DE,进而得出∠B=∠EDB,以=以此分析并利用三角形内角和求解.
解:∵将△ACD沿AD折叠,点C恰好与点E重合,
∴∠C=∠AED,
∵BD的垂直平分线交AB于点E,
∴BE=DE,
∴∠B=∠EDB,
∴∠C=∠AED=∠B+∠EDB=2∠B,
在△ABC中,∠B+∠C+∠BAC=∠B+2∠B+120°=180°,
解得:∠B=20°,
故选:B.
练习册系列答案
相关题目
【题目】两家超市同时采取通过摇奖返现金搞促销活动,凡在超市购物满100元的顾客均可以参加摇奖一次.小明和小华对两家超市摇奖的50名顾客获奖情况进行了统计并制成了图表(如图)
奖金金额 获奖人数 | 20元 | 15元 | 10元 | 5元 |
商家甲超市 | 5 | 10 | 15 | 20 |
乙超市 | 2 | 3 | 20 | 25 |
(1)在甲超市摇奖的顾客获得奖金金额的中位数是 ,在乙超市摇奖的顾客获得奖金金额的众数是 ;
(2)请你补全统计图1;
(3)请你分别求出在甲、乙两超市参加摇奖的50名顾客平均获奖多少元?
(4)图2是甲超市的摇奖转盘,黄区20元、红区15元、蓝区10元、白区5元,如果你购物消费了100元后,参加一次摇奖,那么你获得奖金10元的概率是多少?