题目内容

【题目】如图,在等腰△ABC中,∠ACB = 90,点DCB延长线上一点,过AAEAD,且AE = AD,BEAC的延长线交于点P,求证:PB = PE.

【答案】证明见解析.

【解析】

EMAPM,证BCP≌△EMP,求出BC=AC=EM,证ADC≌△EAM,推出即可;

1:过EEFAC,垂足为F,连接BF,CE

AEAD,ACB = 90

EAF + CAD = 90D + CAD = 90

EAF = D

又∵ AFE = ACB = 90,AE = AD

AFE DCA(AAS)

EF=AC=BC

BCAC,EFAC

EFBC

EFBC

四边形BCEF为平行四边形

PB = PE.

2: AD = AEADAE

可将ADB绕点A逆时针旋转90AEH,

由旋转性质得AH = ABAHAB

BAH为等腰直角三角形,ABH = 45

又∵ ACB中,ACB = 90,AC = BC

ABC = 45

ABH = ABC,则B、C、H三点共线

AP垂直平分BH

PH = PB

PBH = PHB

又由旋转性质得EHBD,即EHBH

PHE = 90PHB,PEH = 90PBH,

PEH = PHB

PH=PE

PB=PE

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网