题目内容

【题目】如图,已知AB为半圆O的直径,C为半圆O上一点,连接AC,BC,过点O作OD⊥AC于点D,过点A作半圆O的切线交OD的延长线于点E,连接BD并延长交AE于点F.

(1)求证:AEBC=ADAB;
(2)若半圆O的直径为10,sin∠BAC= ,求AF的长.

【答案】
(1)

证明:∵AB为半圆O的直径,

∴∠C=90°,

∵OD⊥AC,

∴∠CAB+∠AOE=90°,∠ADE=∠C=90°,

∵AE是切线,

∴OA⊥AE,

∴∠E+∠AOE=90°,

∴∠E=∠CAB,

∴△EAD∽△ABC,

∴AE:AB=AD:BC,

∴AEBC=ADAB.


(2)

解:

作DM⊥AB于M,

∵半圆O的直径为10,sin∠BAC=

∴BC=ABsin∠BAC=6,

∴AC= =8,

∵OE⊥AC,

∴AD= AC=4,OD= BC=3,

∵sin∠MAD= =

∴DM= ,AM= = = ,BM=AB﹣AM=

∵DM∥AE,

∴AF=


【解析】(1)只要证明△EAD∽△ABC即可解决问题.(2)作DM⊥AB于M,利用DM∥AE,得 求出DM、BM即可解决问题.本题考查切线的性质、勾股定理、三角函数、平行线分线段成比例定理、相似三角形的判定和性质等知识,解题的关键是正确寻找相似三角形,学会添加常用辅助线,属于中考常考题型.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网